Air pollution is one of the key problems that need to be overcome in order to secure a more sustainable future for our planet. So it’s great news that a team of scientists from the University of Antwerp and KU Leuven, have devised a process that can both mitigate air pollution as well as provide a clean energy source in the form of hydrogen, at the same time. This device does so using nanomaterials and sunlight.

The nanomaterials are contained within the membrane of the device the team developed, where they are used as a catalyst in this process. Previously, this same type of membrane was used to extract hydrogen from water, but the team has now found that it’s possible for this material to also be used to extract it from polluted air. And on top of that, this membrane is also more efficient at doing so. To test it, the team has made a small prototype of the device, which measures just a few square centimeters, but they plan to scale it up to make it industrially applicable.

The energy for the process to run comes from sunlight, and the device which makes it possible is described as an “all-gas-phase unbiased photoelectrochemical cell”. It works by converting volatile organic pollutants into CO2 at one photoanode, and by harvesting hydrogen gas at the cathode. The device is most efficient when applied to organic pollutants in inert carrier gas, while if oxygen is present, the cell performs less efficiently though significant photocurrents are still generated, meaning that it can be effectively used to purify organic contaminated air.

It will most likely take some time before this device is ready for use on an industrial scale, but it does show a lot of promise. If they successfully scale it up, air pollution could become a source of clean energy instead of being an energy sink and a health hazard.